Skip to navigation Skip to content

News

Expert Comment: How science made the “three-person” baby possible

Family silhouette

Stock image via iStock

By Jennifer Lu | Bond LSC
A new in-vitro fertilization technique that uses genetic material from three persons made the news last week following the announcement of the successful birth of a now five-month-old baby boy. The process allowed the mother, who had a rare mitochondrial disease known as Leigh Syndrome, to have a child without passing her faulty mitochondrial genes.  The nucleus from the mother’s egg was inserted into a prepared donor egg that had healthy mitochondria to make a cybrid, or cytoplasmic hybrid, egg that was then fertilized.

We asked Mark Hannink, Bond LSC scientist and professor of biochemistry, who studies oxidative stress in mitochondria, what this all means.

This is not the first “three-person” baby. Why is this technique new?

It’s another way of getting a healthy mitochondrial genome into the baby.

You have to bring together three parts: nuclear DNA from the mom, nuclear DNA from the dad, and mitochondrial DNA from the donor. The question is whether you bring together the mitochondrial DNA from the donor and the nuclear DNA from the mom first, and then add the DNA from the father.  The other way is making the diploid nucleus first (combining the mother and father’s DNA,) and then putting that into the donor.

Wait, so we have two types of DNA in our cells?

Way way early in evolution, a bacteria got together with a cell that had a nucleus, and they decided to cooperate. Over time, many of the genes that were originally in that bacteria’s genome moved to the nuclear genome. But some of them haven’t. The mitochondrial genome in humans has some 37 genes. But the mitochondria itself has about 1000 different proteins so those other proteins are encoded by the nuclear genome. Together, those proteins work together to form healthy mitochondria that, among other important jobs, provide energy for the cell.

What makes this procedure controversial?

Any time you manipulate the sperm and the egg, there is a chance that you will generate subtle alterations which result in defects in the child during development or after it’s born. Even in vitro fertilization, which has been shown to be effective and works, has a higher rate of diseases associated with it.

Now you’re doing a whole set of complicated manipulations before you get to IVF….You take out the existing nucleus from the donor. You put in the nuclear genome from the mother. And you hope that it all comes back together and then you do the IVF…. Any time you do a manipulation like that, you may cause subtle mistakes that you’re not aware of.

Then there’s the other concern. The mitochondrial proteins encoded by the nuclear genomes and the mitochondrial proteins encoded by the mitochondrial genomes  have to work together to form functional mitochondria that make energy, regulate signaling, regulate calcium, regulate nerve transmission and cell survival.

Your nuclear genes have been interacting with your mitochondrial genes throughout your entire natural lineage, so they’ve coevolved to work together. If, let’s say, there’s a minor mistake made in one of the nuclear genes that encodes a mitochondrial protein in your grandma, you might still get selected for a compensatory mutation in the mitochondrial genome that would still allow a functional mitochondria to be made….But the nuclear genome of one person may not be compatible with the mitochondrial genome of another person even though that mitochondrial genome is normal and works just fine in the context of that person’s nuclear genome. But there’s no way to know that in advance. So you may end up with a healthy baby, or you may end up with a baby in which the nuclear genome and the mitochondrial genome are not compatible.

Article originally published on Decoding Science.